سفارش تبلیغ
صبا ویژن
هر آوندى بدانچه در آن نهند تنگ شود جز آوند دانش که هر چه در آن نهند فراختر گردد . [نهج البلاغه]
آموزشی - مذهبی
درباره



آموزشی - مذهبی


حمید امامی راد
سلام به اهل دلی که بی ریا و با صفاست.قلب پر از محبتش همیشه به یاد خداست.دور از وجودتان هر چه درد و بلاست. مطالب وبلاگ ترکیبی از مسائل مذهبی و آموزشی (اکثرا آموزش ابتدایی) می باشد. امید است مورد توجه قرار گیرد. ملتمس دعای خیر دوستان هسنم.
لینک‌های روزانه

بسیار پیش می آید که دانش آموزان پس از تدریس یک درس ، از ما می پرسند که این درس که امروز خواندیم ،به چه درد ما می خورد؟و کجامی توانیم ازآن استفاده کنیم ؟

ریاضیات به عنوان یک درس اصلی است که داشتن درک درست از آن در آینده ی تحصیلی دانش آموزان و طبعاً پیشرفت علمی کشور نقش مهمی دارد . همچنین شامل کلیه ارتباطات ریاضی با زندگی روزمرّه ، سایر علوم و کاربردهایی در زندگی علمی آینده ی دانش آموزاست .به این ترتیب دربرنامه درسی و آموزشی ، برقرار کردن پیوند ریاضیات با کاربردهایش در زندگی و سایر علوم از قبیل :هنر،علوم طبیعی ،علوم اجتماعی و . . . . باید مدّ نظر قرار گیرد . در صورتی که این موارد در آموزش دیده نشود ، این سؤ ال همیشه در ذهن دانش آموز باقی می ماند که:

« به چه دلیل باید ریاضی خواند ؟ » و« ریاضی به چه درد می خورد ؟ »

دراین مقاله سعی شده است که ارتباط دروس کتب ریاضی راهنمایی با سایر علوم و همچنین کاربرد آنها در دنیای امروز ی تا حدودی بررسی شود و ارائه گردد .

بین رشته های علمی ، که بشر در طول هزاران سال به وجود آورده ، ریاضیّات جای مخصوص و ضمناٌ مهمّی را اشغال کرده است . ریاضیّات با علوم فیزیک ، زیست شناسی ، اقتصاد و فنون مختلف فرق دارد . با وجود این به عنوان یکی از روشهای اصلی در بررسیهای مربوط به کامپیوتر ، فیزیک ، زیست شناسی ، صنعت واقتصاد بکار می رود ودرآینده بازهم نقش ریاضّیات گسترش بیشتری می یابد.

با وجود این مطلب ، برای آموزش جوانان هنوز از همان روشی استفاده می شود که سقراط و افلاطون ، حقایق عالی اخلاقی را برای شیفتگان منطق و فلسفه و برای علاقمندان سخنوری و علم کلام بیان می کردند . در حقیقت در درسهای حساب ، هندسه و جبر ،هرگز لزوم یادگیری آنها برای زندگی عملی خاطر نشان نمی شود. هرگز از تاریخ علم صحبتی به میان نمی آید. نظریه های سنگین علمی ، ولی هیچ نتیجه ای جز این ندارد که دانش آموزان را از علم بری کند و عدّه ی آنها را تقلیل دهد .

یکی ازراههای جدی برای حلّ مسئله توجه به تاریخ علم، گفتگو در باره ی مردان علم و ارتباط ریاضی با عمل است ، ارتباطی که در تمام دوران زندگی بشر هرگز قطع نشده است .

? کاربرد ارقام

 

در زمانهای قدیم هر قدمی که در راه پیشرفت تمدّن برداشته می-شد، بر لزوم استفاده از اعداد می افزود . اگر شخصی گله ای از گوسفندان داشت ، می خواست آن را بشمرد ،یا اگر می خواست معبد یا هرمی بسازد ، باید می دانست که چقدر سنگ برای آن لازم دارد . اگر دارای زمین بود ، می خواست آن رااندازه گیری کند . اگر قایقش را به دریا می راند ، می خواست فاصله ی خود را از ساحل بداند . و بالاخره در تجارت و مبادله ی اجناس در بازارها ، باید ارزش اجناس حساب می شد.هنگامی که آدمی محاسبه با ارقام را آموخت ، توانست زمان ، فاصله مساحت ، حجم را اندازه گیری کند . با بکار بردن ارقام ، انسان بردانش و تسلّط خود بر دنیای پیرامونش افزود .

? کاربرد توابع و روابط بین اعداد

کاربرد روابط بین اعداد و توابع و نتیجه گیریهای منطقی در نوشتن الگوریتمها و برنامه نویسی کامپیوتری است .

مفهوم تابع یکی از مهمترین مفاهیم ریاضی است و در اصل تابع نوعی خاص از رابطه های بین دو مجموعه است . و با توجه به این که دنباله ها هم حالت خاصی از تابع است - تابعی که دامنه آن مجموعه ی اعداد { . . . و 2 و 1 و 0 } است - دنباله های عددی در ریاضی و کامپیوتر کاربرد فراوان دارند . برای ساخت یک برنامه اساساٌ چهار مرحله را طی می کنیم :

1) تعریف مسئله

2) طراحی حل

3) نوشتن برنامه

4) اجرای برنامه

لازم به ذکر است که گردآیه هایی که در مرحله دوم حاصل می شود را اصطلاحاٌ الگوریتم می نامیم .که این الگوریتمهابه زبان شبه کد نوشته می شود ،که شبیه زبان برنامه نویسی است وتبدیل آنها به زبان برنامه نویسی را برای ما بسیار ساده می کند .

 « هیچ دانسته ی بشر را نمی توان علم نامید، مگر اینکه از طریق ریاضیّات توضیح داده شده و ثابت شود . » ( لئو ناردو داوینچی )

? کاربرد معادله و دستگاه معادلات خطی

دستگاه های معادلات خطی اغلب برای حساب کردن بهره ی ساده ،پیشگویی ، اقتصاد و پیدا کردن نقطه ی سر به سر به کارمیرود.

معمولاً هدف از حل کردن یک دستگاه معادلات خطی ، پیدا کردن محل تقاطع دو خط می باشد.در مسائل دخل و خرج که درمشاغل مختلف وجود دارد ، پیداکردن نقطه تقاطع معادلات خط یعنی همان پیدا کردن نقطه ی سر به سر.* در اقتصاد هم نقطه تقاطع معادلات خطی ، عبارتست از : قیمت بازار یا نقطه ای که در آن عرضه و تقاضا با هم برابر باشند.

? کاربرد تقارنها (محوری و مرکزی ) و دَوَرانها

مباحث تقارنها ودورانها که به تبدیلات هندسی معروف هستند،درصنعت و ساختن وسائل و لوازم زندگی استفاده می شوند . مثلاً در بافتن قالی و برای دادن نقش و نگار به آن از تقارن استفاده می شود . در کوزه گری و سفالگری از دوران محوری استفاده می - شود . همچنین در معماریهای اسلامی اغلب از تقارنها کمک گرفته می شود . چرخ گوشت ، آب میوه گیری ، پنکه ، ماشین تراش ُ بادورانی که انجام می دهند ، تبدیل انرژی می کنند . علاوه بر آن تبدیلات هندسی برای آموزش مطالبی از ریاضی استفاده می شوند ،مانند : مفهوم جمع و تفریق اعداد صحیح با استفاده از بردار انتقال موازی محور.

? نقطه ی سر به سر : در بسیاری از مشاغل ، هزینه ی تولید Cو تعداد X     کالای تولید شده را می توان به صورت خطی بیان کرد.به همین ترتیب ، در آمد R     حاصل از فروش X     قلم کالای تولیدشده را نیز می توان با یک معادله ی خطی نشان داد . وقتی هزینه ی C     از در آمد R     حاصل از فروش بیشتر باشد،این تولیدضررمی دهد. و وقتی در آمد R     از هزینه ی C     بیشتر باشد ،تولید سودمیدهد . و هر گاه در آمد R     و هزینه ی C     مساوی باشند ،سود و زیانی در بین نیست و نقطه ای که در آن R=C     باشد، نقطه ی سربه سر نامیده می شود .

? کاربرد مساحت

مفهوم مساحت و تکنیک محاسبه مساحت اشکال مختلف ، از اهمّ مطالب هندسه است .به سبب کاربرد فراوانی که در زندگی روزمرّه مثلاً برای محاسبه ی مساحت زمینها با اَشکال مختلف . و همچنین درفیزیک و جغرافیاوسایر دروس دانستن مساحتهالازم به نظرمی رسد .

? کاربرد چهار ضلعیها

شناخت چهارضلعیها و و دانستن خواص آنها ، برای یادگیری مفاهیم دیگر هندسه لازم است و ضمناً در صنعت و ساخت ابزار و وسائل زندگی و همچنین برای ادامه تحصیل وهمینطور در بازار کار نیاز به دانستن خواص چهارضلعیها احساس می شود .

? کاربرد خطوط موازی و تشابهات

از خطوط موازی و مخصوصاً متساوی الفاصله ، در نقشه کشی و ترسیمات استفاده می شود .و در اثبات احکامی نظیر قضیه تالس1 و عکس آن ، همچنین تقسیم پاره خط به قطعات متساوی یامتناسب .

تشابهات نیز از مفاهیم مهم هندسه و اساس نقشه برداری ،کوچک و بزرگ کردن نقشه ها و تصاویر و عکسها می باشد .

مبحث تشابهات درهندسه دریچه ای است به توانائیهای جدیدبرای درک و فهم و کشف مطالب تازه ی هندسه ،به همین سبب آموزش خطوطمتوازی و متساوی الفاصله و مثلثهای متشابه به حد نیاز دانش-

آموز مقطع راهنمایی لازم است .

1) تالس دانشمند یونانی نشان داد که به وسیله ی سایه ی یک شیء و مقایسه ی آن با سایه ی یک خط کش می توان ارتفاع آن  شیء را اندازه گرفت . با استفاده از اصولی که تالس ثابت کرد ،می توان بلندی هر چیزی را حساب کرد . تنها چیزی که نیاز دارید ، یک وسیله ی ساده اندازه گیری است که می توانید[آن را ] از یک قطعه مقواو تکه ای چوب درست کنید.( مراجعه شودبه کتاب درجهان ریاضیات نوشته ی اریک او بلاکر - صفحه ی 30 )

تالس در زمان خود به کمک قضیه ی خودارتفاع اهرام مصررامحاسبه کرد همچنین وقتی از مصر به یونان بازگشت ، فاصله ی یک کشتی را از ساحل به کمک قضیه خود اندازه گرفت .روش دیگری هم برای

محاسبه بلندی وجود دارد وآن استفاده از نسبتهای مثلثاتی است.

 ? کاربرد آمار و میانگین

وقتی کسی از مقادیر عددی کمک می گیرد ، تا یک موقعیّت را توضیح دهد ، او وارد قلمرو آمار شده است . آمار معمولاً اثر تعیین کننده ای دارد . اگر چه ممکن است مفید یا گمراه کننده باشد . ما عادت کرده ایم، که پدیده های زیادی نظیرموارد زیر را با توجه به آمار ، پیش بینی کنیم :

احتمال پیروزی یک کاندیدای ریاست جمهوری،وضعیت اقتصادی(تورم،در آمد ناخالص ملی ، تعداد بیکاران ،کم وزیادشدن نرخ بهره هاونرخ سهام ، بازار بورس ، میزان بیمه ، آمار طوفان،جذر و مد) و غیره .

قلمرو آمار به طور مرتب درحال بزرگ شدن است.آمار می توانددر موارد زیادی ، برای قانع کردن مردم و یا انصراف آنهااز یک تصمیم موءثّر باشد . به عنوان مثال : اگر افراداحساس کنند که رأی آنها نتیجه ی انتخابات را تغییر نخواهد داد ، ممکن است ازشرکت در انتخابات صرفنظر کنند .

در عصر ما آمار ابزار قوی و قانع کننده است،مردم به اعدادمنتشر شده ی حاصل از آمار گیری ،اعتماد زیادی نشان می دهند.

به نظر می رسد وقتی یک وضعیت وموقعیت باتوسل به مقادیر عددی توصیف می شود ، اعتبار گزارش در نظر مستمعین بالا می رود .

 


کلمات کلیدی:


نوشته شده توسط حمید امامی راد 90/5/16:: 7:5 عصر     |     () نظر